Adenosine decreases action potential duration by modulation of A-current in rat locus coeruleus neurons.
نویسندگان
چکیده
The possibility that adenosine modulates voltage-dependent conductances in locus coeruleus neurons was investigated in current-clamp and voltage-clamp experiments in a totally submerged rat brain slice preparation. Adenosine (100 microM) reduced the duration of control action potentials and action potentials prolonged by 1 mM barium. Adenosine (100 microM) also reduced the amplitude and slightly reduced the duration of TTX-resistant "calcium" action potentials. Action potential duration was also reduced by the adenosine receptor agonist 2-chloroadenosine in a concentration-dependent manner and the adenosine-induced reduction of action potential duration was blocked by the adenosine receptor antagonist 8-(p-sulfophenyl)theophylline, indicating that this action of adenosine is mediated by an adenosine receptor. The adenosine-induced reduction of action potential duration persisted in the presence of externally applied tetraethylammonium ion (6 mM) and cesium (3 mM). By contrast, adenosine did not reduce the duration of the action potential in the presence of 500 microM 4-aminopyridine (4-AP). Furthermore, 4-AP (30 microM) blocked the adenosine-induced reduction of action potential duration recorded in the presence of 1 mM barium. These data suggested that adenosine may be acting on the voltage-dependent, 4-AP-sensitive potassium current, IA. Single-electrode voltage clamp was used to study IA directly. IA was activated by depolarizing voltage pulses from a hyperpolarized holding potential and was blocked by 1 mM 4-AP. Adenosine (300 microM) enhanced IA by shifting the steady-state inactivation curve in the depolarizing direction.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Is the pain modulatory action of 17β-estradiol in locus coeruleus of male rats is mediated by GABAA receptors?
Introduction: Estradiol is a neuroactive steroid, which is found in several brain areas such as locus coeruleus (LC). Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membranebound receptors like glutamate and GABAA receptors. LC is involved in noradrenergic descending pain modulation. Methods: In order to study the effect of 17β-estra...
متن کاملPostnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کاملEffect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملEffects of adenosine and ATP on the membrane potential and synaptic transmission in neurons of the rat locus coeruleus.
Effects of adenosine (Ado) and adenosine 5'-triphosphate (ATP) on the membrane potential and synaptic transmission in neurons of the rat locus coeruleus (LC) were examined, in vitro. Ado (30-300 microM) produced a hyperpolarizing response and inhibited spontaneous firing activity in neurons of the rat LC. Ado decreased input resistance of LC neurons. The Ado-induced hyperpolarization reversed p...
متن کاملThe effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections
As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 3 Pt 1 شماره
صفحات -
تاریخ انتشار 1994